339 research outputs found

    Gas Metallicity in the Narrow-Line Regions of High-Redshift Active Galactic Nuclei

    Full text link
    We analyze optical (UV rest-frame) spectra of X-ray selected narrow-line QSOs at redshift 1.5 < z < 3.7 found in the Chandra Deep Field South and of narrow-line radio galaxies at redshift 1.2 < z < 3.8 to investigate the gas metallicity of the narrow-line regions and their evolution in this redshift range. Such spectra are also compared with UV spectra of local Seyfert 2 galaxies. The observational data are inconsistent with the predictions of shock models, suggesting that the narrow-line regions are mainly photoionized. The photoionization models with dust grains predict line flux ratios which are also in disagreement with most of the observed values, suggesting that the high-ionization part of the narrow-line regions (which is sampled by the available spectra) is dust-free. The photoionization dust-free models provide two possible scenarios which are consistent with the observed data: low-density gas clouds (n < 10^3 cm^-3) with a sub-solar metallicity (0.2 < Z/Z_sun < 1.0), or high-density gas clouds (n ~ 10^5 cm^-3) with a wide range of gas metallicity (0.2 < Z/Z_sun < 5.0). Regardless of the specific interpretation, the observational data do not show any evidence for a significant evolution of the gas metallicity in the narrow-line regions within the redshift range 1.2 < z < 3.8. Instead, we find a trend for more luminous active galactic nuclei to have more metal-rich gas clouds (luminosity-metallicity relation), which is in agreement with the same finding in the studies of the broad-line regions. The lack of evolution for the gas metallicity of the narrow-line regions implies that the major epoch of star formation in the host galaxies of these active galactic nuclei is at z > 4.Comment: 16 pages, 12 figures, submitted to Astronomy and Astrophysic

    Seyfert-Type Dependences of Narrow Emission-Line Ratios and Physical Properties of High-Ionization Nuclear Emission-Line Regions in Seyfert Galaxies

    Get PDF
    In order to examine how narrow emission-line flux ratios depend on the Seyfert type, we compiled various narrow emission-line flux ratios of 355 Seyfert galaxies from the literature. We present in this paper that the intensity of the high-ionization emission lines, [Fe VII]6087, [Fe X]6374 and [Ne V]3426, tend to be stronger in Seyfert 1 galaxies than in Seyfert 2 galaxies. In addition to these lines, [O III]4363 and [Ne III]3869, whose ionization potentials are not high (< 100 eV), but whose critical densities are significantly high (> 10^7 cm^-3), also exhibit the same tendency. On the other hand, the emission-line flux ratios among low-ionization emission lines do not show such a tendency. We point out that the most plausible interpretation of these results is that the high-ionization emission lines arise mainly from highly-ionized, dense gas clouds, which are located very close to nuclei, and thus can be hidden by dusty tori. To examine the physical properties of these highly-ionized dense gas clouds, photoionization model calculations were performed. As a result, we find that the hydrogen density and the ionization parameter of these highly-ionized dense gas clouds are constrained to be n_H > 10^6 cm^-3 and U > 10^-2, respectively. These lower limits are almost independent both from the metallicity of gas clouds and from the spectral energy distribution of the nuclear ionizing radiation.Comment: 32 pages, to appear in Publications of the Astronomical Society of Japa

    How Do We See the Nuclear Region (r < 0.1 pc) of Narrow-Line Seyfert 1 Galaxies?

    Get PDF
    We propose two statistical tests to investigate how we see the nuclear region (r < 0.1 pc) of Narrow-Line Seyfert 1 galaxies (NLS1s). 1) The high-ionization nuclear emission-line region (HINER) test: Seyfert 1 galaxies (S1s) have systematically higher flux ratios of [Fe VII] lambda 6087 to [O III] lambda 5007 than Seyfert 2 galaxies (S2s). This is interpreted in that a significant part of the [Fe VII] lambda 6087 emission arises from the inner walls of dusty tori that cannot be seen in S2s (Murayama & Taniguchi 1998a,b). 2) The mid-infrared test: S1s have systematically higher flux ratios of the L band (3.5 micrometer) to the IRAS 25 micrometer band than S2s. This is also interpreted in that a significant part of the L band emission arises from the inner walls of dusty tori, because the tori are optically thick enough to absorb the L band emission if the tori are viewed nearly edge on (Murayama et al. 2000). Applying these tests to a sample of NLS1s, we have found that the NLS1s possibly have nearly the same properties as S1s.Comment: Contributed talk presented at the Joint MPE,AIP,ESO workshop on NLS1s, Bad Honnef, Dec. 1999, to appear in New Astronomy Reviews; also available at http://wave.xray.mpe.mpg.de/conferences/nls1-worksho

    Multi-phase gas nature in the sub-pc region of the active galactic nuclei II: Optical-UV spectra originated in the ionized gas

    Full text link
    Through two-dimensional radiation-hydrodynamical simulations, we investigate the spectral properties of ionized gas irradiated by an active galactic nucleus with a supermassive black hole of 10^7 Msun. For the gas inside the dust-sublimation radius (r ~ 10^{-2} pc), we conduct post-process pseudo-three-dimensional calculations utilizing the spectral synthesis code Cloudy. We show that we can reproduce various broad emission lines in optical and ultraviolet wavelengths. The line profiles change depending on the viewing angles even for a small range from the rational axis, i.e., 5-30 degrees; most lines, such as Halpha, are characterized by a double-peaked profile, reflecting that the emissions are originated in the surface of the rotating disk. By contrast, high-ionization emission lines such as CIV 1549 show a double-peaked profile for a nearly face-on view, as these lines derive from the fast outflowing gas from the disk surface. Our results suggest that some properties of the bright UV-optical emission lines observed in Seyfert-like AGNs can be caused by the radiation-driven fountain flow inside the dust sublimation radius.Comment: ApJ submitte
    • …
    corecore